秦九韶(南宋数学家)

秦九韶南宋数学家

秦九韶(1208年-1261年)是南宋时期的官员、数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。字道古,汉族,祖籍鲁郡(今河南省范县),生于普州安岳(今四川省安岳县)。

他精研星象、音律、算术、诗词、弓剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所,1247年完成著作《数书九章》,《数学九章》被称为“算中宝典”。秦九韶的数学思想是中华优秀传统文化的重要组成部分。

本名

秦九韶

别名

秦道古

所处时代

南宋

民族族群

汉族

出生地

普州安岳(今四川安岳)

出生年月

1208年(李俨钱宝琮认为1202年)

去世年月

1268年

职业

官员、数学家

代表作品

数学九章

主要成就

1247年完成数学名著《数书九章》、发明“秦九韶算法”、推导“秦九韶公式”

信仰

道家

民间传说着一则故事——“韩信点兵”

秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃。

首先我们先求3、5、7、的最小公倍数105(注:因为3、5、7为两两互质的整数,故其最小公倍数为这些数的积),乘以10,然后再加23,得1073(人)。

《孙子算经》中的一道算术题

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。

这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的。

①有一个数,除以3余2,除以4余1,问这个数除以12余几?

解:除以3余2的数有:

2,5,8,11,14,17,20,23….

它们除以12的余数是:

2,5,8,11,2,5,8,11,….

除以4余1的数有:

1,5,9,13,17,21,25,29,….

它们除以12的余数是:

1,5,9,1,5,9,….

一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.

如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件。《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案。

②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。

解:先列出除以3余2的数:

2,5,8,11,14,17,20,23,26,…,

再列出除以5余3的数:

3,8,13,18,23,28,….

这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数2,9,16,23,30,…,

就得出符合题目条件的最小数是23。

事实上,我们已把题目中三个条件合并成一个:被105除余23。

那么韩信点的兵在1000-1500之间,应该是105×10+23=1073人。

孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

毁誉参半

秦九韶

对于秦九韶究竟是何等样人,除了“伟大的数学家”之外,通常就讳莫如深了。用现代的眼光看,秦九韶可能是中国历史上少见的奇人之一。

关于秦九韶究竟是何等样人,其实宋人文献中留下了相当丰富的记载,主要可见于周密(人名)的《癸辛杂识续集》卷下和著名词人刘克庄文集中的“缴秦九韶知临江军奏状”。秦九韶18岁就统帅私人武装,为人“豪宕不羁”,如果将他和意大利文艺复兴时期的那些风云人物相比,竟有几分相似:他多才多艺,懂得星占、数学、音乐、建筑,还擅长诗文,会骑术、剑术、踢球等等。同时又利欲熏心,骄奢淫逸,热衷于做官,一心往上爬。秦九韶做过几任地方官,最后死在梅州任上。他最高做到大约相当于局级的官职。

秦九韶18岁返乡举义兵抗元,为其首领。作为一位想作为的爱国者而言,秦不得不深深卷入了南宋统治集团的内部斗争,在投降派贾似道与吴潜的斗争中,他属于抗战派吴潜的营垒,引起了贾似道、刘克庄、周密辈的嫉恨,被吴潜冤案株连,遭到诋毁,贬逐;而刘克庄、周密等奸妄小人、封建政客的诽谤文字又流传到后世,后人死读书不察,而铸成千古奇冤。这与岳飞与秦桧的关系有点类似。岳飞遭秦桧陷害反映了北宋的战略懦弱,秦九韶遭庸官攻击暗示着南宋的必然灭亡。

首先,贾似道把持下的南宋政权腐朽,政治空前黑暗,大批有才有识主张抗战的忠良之士遭到弹劾诬陷,冤狱遍于国中。此时朝廷中出现的弹劾官员的奏状大多颠倒黑白。以这类奏状作为评判一个人的依据,缺乏客观性、公正性。

其次,南宋统治集团中主战、主和的两派斗争,在13世纪50年代末,发展到你死我活的境地。贾似道掌握了军政大权,吴潜被罢官贬逐。秦九韶作为吴潜党人被贬到梅州。

秦九韶和刘克庄、周密都深陷于战和两派的斗争。刘克庄晚年投靠贾似道,助纣为虐,陷害忠良,文史学界也认为这是其“污点”。显然,刘克庄弹劾秦九韶的奏状是贾似道打击以吴潜为首的主战派的活动的一部分。周密是贾似道的门人,在贾似道败亡后仍有许多为其辩护、指责正直人士的说辞,并没有完全摆脱贾府的影响。尽管周密和刘克庄不见得是投降派,然而在政治上,他们同属贾似道一派,与秦九韶是政敌。而政敌的指责,是不能轻易相信的。因此,刘克庄与周密的文字能互相印证,不能成为评价秦九韶的铁证。他们同属一派,对秦九韶有相同的看法说明不了任何问题。余嘉锡等以周密之书“为证”,相信刘克庄对秦九韶的指责,是不合适的。

实际上,刘克庄、周密对秦九韶的指责确有不少不实之辞。比如周密指责秦九韶“性喜奢好大,嗜进谋身”,其例证是“或以历学荐于朝,得对。有奏稿及所述《数学大略》”。《数学大略》即《数书九章》。事实是当时所施行的历法已经不准确,太史局的历官却不会改历,朝廷多次召请通历算者。秦九韶精通历算,到朝廷奏对,是值得表彰的愿意为社会服务的正大光明行为。周密的指责恰恰说明他确实如焦循所说的徒有“填词小说之才,实学非其所知”。[2]

历史影响

2020年6月,四川历史名人文化传承创新工程领导小组评选为“第二批四川历史名人”。[3]

词条图册

秦九韶的概述图册秦九韶的概述图册参考资料

1.蒙冤800年 南宋数学家秦九韶 政治斗争中被污的抗蒙英雄·华西都市报

2.是“毒如蛇蝎”还是“瑰奇仁人”?——为秦九韶辩诬·中国社会科学网

3.第二批四川历史名人出炉 他们开创多个“第一”·四川在线

关键词:秦九韶