驻点(数学概念)
在微积分,驻点(Stationary Point)又称为平稳点或临界点(Critical Point)是函数的一阶导数为零,即在这一点,函数的输出值停止增加或减少。对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部最大值或局部最小值。
中文名驻点
Stationary point
critical point
函数单调性可能改变
数学概念
可导函数的极值点必为驻点
静态平衡系统
在分析力学里,虚功原理阐明,对于一个静态平衡(static equilibrium)系统,所有外力的作用,经过虚位移,所作的虚功,总合等于零,以方程式表达,其中,是虚功,是第个外力,是对应于的虚位移。转换为以广义力和广义坐标表达,假设这系统是保守系统,则每一个广义力都是一个标量的广义位势函数的对于其对应的广义坐标的导数:虚功与广义位势的关系为所以,一个静态平衡系统的位势乃是个局域平稳值。注意到这系统只处于平稳状态。假设,要求这这系统处于稳定状态,则位势必须是个局域极小值。
拉格朗日方程式
在变分法里,欧拉-拉格朗日方程式是从其对应的泛函的平稳点推导出的一种微分方程式。设定
参见
简介
在数学上,一个反曲点或拐点是一条可微曲线改变凹凸性的点,或者等价地说,是使切线穿越曲线的点。决定曲线的拐点有助于理解曲线的外形,这在描绘曲线图形时特别有用。《北京日报》1982.10.31:“全县二十二个有围网的队都做好了一切准备工作,提前到驻点候着。”[1]
定义
若曲线图形在一点由凸转凹,或由凹转凸,则称此点为拐点。直观地说,拐点是使切线穿越曲线的点。
若该曲线图形的函数在某点的二阶导数为零(且二阶导数在该点两侧符号相反),或不存在,该点即为函数的拐点。这是寻找拐点时最实用的方法之一。
充要条件
拐点的必要条件:设在内二阶可导,,若是曲线的一个拐点,但是0两侧全是凸,所以0不是函数的拐点。
拐点的充分条件:设在内二阶可导,,若在两侧附近异号,则点为曲线的拐点。否则(即保持同号),不是拐点。
分类
拐点可以根据 f'(x)为零或不为零,进行分类。
如果f'(x)为零,此点为拐点的驻点,简称为鞍点。
如果f'(x)不为零,此点为拐点的非驻点。
举一个鞍点的例子,是y=x³的点(0,0)。切线为x轴;切线正好在将图像分为两半。
参数曲线
平面参数曲线的拐点是使其曲率变号的点,此时曲率中心(居于曲线凹侧)从曲线的一侧换至另一侧。
双正则点
双正则点是使得参数曲线的一阶与二阶微分(它们是向量)线性无关的点。在双正则点上,曲线既无拐点亦非直线。在非双正则点上曲率为零,但是不一定有变号。在寻找参数曲线的拐点时,我们通常先以微分找出非双正则点,继之研究其局部性状,以判定是否为拐点。
设为域上的平面代数曲线,其拐点定义为一平滑点,使得该点切线与在点的相交重数。
注意到一条曲线与在点相切的充要条件是相交重数。当时,代数曲线的拐点定义等价于上节注记中的广义定义。
鞍点
一个不是局部极值点的驻点称为鞍点。
广义而说,一个光滑函数(曲线,曲面,或超曲面)的鞍点邻域的曲线,曲面,或超曲面,都位于这点的切线的不同边。
鞍点这词语来自于不定二次型的二维图形,像个马鞍:在x-轴方向往上曲,在y-轴方向往下曲。
检验二元实函数F(x,y)的驻点是不是鞍点的一个简单的方法,是计算函数在这个点的黑塞矩阵:如果黑塞矩阵的行列式小于0,则该点就是鞍点。例如,函数在驻点的黑塞矩阵是:
我们可以看到此矩阵有两个特征值2,-2。它的行列式小于0,因此,这个点是鞍点。然而,这个条件只是充分条件,例如,对于函数点是一个鞍点,但函数在原点的黑塞矩阵是零矩阵,并不小于0。的鞍点在 (0,0) ,一维鞍点看起来并不像马鞍!在一维空间里,鞍点是驻点·也是反曲点。因为函数图形在鞍点由凸转凹,或由凹转凸,鞍点不是区域性极点。
思考一个只有一个变量的函数。这函数在鞍点的一次导数等于零,二次导数换正负符号·例如,函数 就有一个鞍点在原点。
两座山中间的鞍点(双纽线的交叉点)
思考一个拥有两个以上变量的函数。它的曲面在鞍点好像一个马鞍,在某些方向往上曲,在其他方向往下曲。在一幅等高线图里,一般来说,当两个等高线圈圈相交叉的地点,就是鞍点。例如,两座山中间的山口就是一个鞍点。
极值
在数学中,极大值与极小值(又被称为极值)是指在一个域上函数取得最大值(或最小值)的点的函数值。而使函数取得极值的点(的横坐标)被称作极值点。这个域既可以是一个邻域,又可以是整个函数域(这时极值称为最值)。数学函数的一种稳定值,即一个极大值或一个极小值。[2]
局部最大值:如果存在一个ε > 0,使的所有满足|x-x*| < ε的x都有f(x*)≥ f(x)我们就把点x*对应的函数值f(x*)称为一个函数f的局部最大值。从函数图像上看,局部最大值就像是山顶。
局部最小值:如果存在一个ε > 0,使的所有满足|x-x*| < ε的x都有f(x*)≤ f(x)我们就把点x*对应的函数值f(x*)称为一个函数f的局部最小值。从函数图像上看,局部最小值就像是山谷的底部。
全局(或称‘绝对’)最大值:如果点x*对于任何x都满足f(x*)≥ f(x),则点f(x*)称为全局最大值。 全局(或称‘绝对’)最小值:如果点x*对于任何x都满足f(x*)≤ f(x),则点f(x*)称为全局最小值。
全局最值一定是局部极值,反之则不然。
极值的概念不仅仅限于定义在实数域上的函数。定义在任何集合上的实数值函数都可以讨论其最大最小值。为了定义局部极值,函数值必须为实数,同时此函数的定义域上必须能够定义邻域。邻域的概念使得在x的定义域上可以有|x - x*| < ε。
局部最大值(最小值)也被称为极值(或局部最优值),全局最大值(最小值)也被称为最值(或全局最优值)。
求极值的方法
求全局极值是最优化方法的目的。对于一元二阶可导函数,求极值的一种方法是求驻点(亦称为静止点,停留点,英语:stationary point),也就是求一阶导数为零的点。如果在驻点的二阶导数为正,那么这个点就是局部最小值;如果二阶导数为负,则是局部最大值;如果为零,则还需要进一步的研究。
一般地,如果在驻点处的一阶、二阶、三阶……直到N阶导数都是零,而N+1阶导数不为零,则当N奇数且N+1阶导数为正时,该点为极小值;当N是奇数且N+1阶导数为负时,该点为极大值;如果N是偶数,则该点不是极值。
如果这个函数定义在一个有界区域内,则还要检查局域的边界点。如果函数在定义域内存在不可导点,则这些不可导点也可能是极值点。
例子
函数有惟一最小值,在x = 0 处取得。函数没有最值,也没有极值,尽管其一阶导数在x = 0处也为0。因为其二阶导数(6x)在该点也是0,但三阶导数不是零。
函数cos(x)有无穷多个最大值,在x =0, ±2π, ±4π, ...,与无穷多个最小值 在x =±π, ±3π ... .
求函数的极值时还应当考虑其不可导点,即导数不存在的点。如函数y=|x|中0处的导数不存在,事实上从图像上也能看出这一点来。而且0就是该函数的一个极小值。
参考资料
1.驻点·词典网
2.极值·词典网